
 

Abstract— Color information is useful in vision-based 
feature detection, particularly for applications involving 
natural objects.  One of the factors influencing the success rate 
of color machine vision in detecting a target is its ability to 
characterize the color. When unrelated features are very close 
to the target in the color space, which may not pose a 
significant problem to an experienced operator, they appear as 
noise and often results in false detection. This paper describes a 
method for creating artificial color contrast (ACC) between 
features in color space with objective of highlighting the target 
while suppressing surrounding noise; the development of this 
ACC method has been motivated by the ability of the human to 
perceive fine gradation of a variety of color especially for 
natural products where, in most cases, humans are still the 
sensor of choice.   The efficiency of this method is demonstrated 
on representative automation problems. 
Keywords— Machine Vision, Inspection, color classification   

I. INTRODUCTION 
Machine vision (MV) has been applied extensively in 

many automated inspection tasks. As compared to humans, 
MV can make more accurate quantitative measurement and 
has been successfully employed for gauging man-made 
objects designed to definable tolerances. Early MV research 
has largely focused on developing algorithms that use edge 
and shape information of grayscale images to make 
decisions. Their applications to high-speed automation of 
natural products, such as food-processing or agricultural 
live-object handling where reliability, cycle time and 
productivity are of prime concern and variability in natural 
objects is usually several orders-of-magnitude higher than 
that for manufactured goods, have remained a challenge. As 
a result, most solutions to inspection problems of natural 
product today still have humans in the loop. MV algorithms 
that can provide robust sensing of natural product at high 
speed would be of tremendous value since MV systems do 
not get tired and suffer performance degradation as a result, 
and can free many of the people now conducting these jobs 
for more constructive activity.  

The presence of color is one of the most striking 
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features in nature.  Over the past two decades, an increase in 
color MV (CMV) research has been seen in industry and 
space exploration as well as in human face identification.  
This trend appears to be accelerating because of the rapid 
advance in digital vision sensor technology coupled with the 
lucrative market of consumer color cameras, which 
continues to lower the cost of color vision hardware. In 
addition, color information is an attractive addition to edge 
and shape, particularly for food processing applications 
where color variability often renders grayscale-based MV 
algorithms difficult or impossible to work.  Figures 1(a) and 
2(a) show two sample examples with inspection problems 
commonly encountered in food processing [1] [2]; grapefruit 
inspection and detection of contamination in packaged food 
product, where MV is used to sort this product based on user 
generated parameters.  Figures 1(b) and 2(b) show the 
grayscale images of the same two products; it can be seen 
that color is necessary in order to differentiate between 
defective areas (such as the blush or contamination) as they 
would be confused with shading. Figures 1(c) and 2(c) show 
the transformed images (that are more desired representation 
to machines) using a technique discussed in this paper, 
where color contrast between features is artificially created 
while noise is suppressed.  

(a) original (b) grayscale (c) Transformed 
Fig. 1 Grapefruit inspection 

(a) original (b) grayscale (c) Transformed 
Fig. 2 Detection of contaminations in packaged food 

However, CMV has its own problems. One of the 
factors influencing the success rate of a CMV in detecting a 
target is its ability to characterize color [3].  The boundary of 
the patterns characterizing the target in color space (for 
practical automation) can only be constructed from a limited 
set of training data and thus is essentially an approximation.
When unrelated features are very close to the target in color 
space, which may not pose a problem to an experienced 
operator, they appear as noise and often result in false 
detection. This ability of the human to perceive fine 
gradation of color has motivated us to develop a robust 
method to improve CMV reliability in finding color features 
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in natural product, which partially emulates some functions 
in human visual system (HVS) by creating ACC. 

Color vision has been extensively studied for two 
centuries and has made great progress in applying in 
diagnosis of eye disease [4]. This knowledge leads to some 
understanding of color contrast (a ratio of the incremental 
intensity to the background illumination), which enormously 
enhances our visual capabilities in discriminating features 
from their background. Much of these visual capabilities 
occur in the eye (analogous to a camera) and the retina (like 
a signal filtering system) before reaching the brain, which 
we refer here on as the human visual system (HVS).  In this 
paper, we describe a method to create ACC between features 
in order to reduce noise for color classification by 
highlighting targets while suppressing unrelated features   

The understanding of the HVS models for use in solving 
MV problems has been actively pursued by a number of 
researchers during the last three decades. In the early 
computational vision, Marr [5] modeled vision as a process 
to produce from images of the external world a 3D 
description that is useful to the viewer. In another human 
performance (HP) based approach, Doll et. al [6] developed 
the Georgia Tech Vision (GTV) model for detecting texture 
in natural images and for tracking of tanks and faces in 
moving image sequences. Gershon [7] used biological 
models for early chromatic visual processing and for 
determining material changes. In [8], non-linear filters based 
on HVS models for smoothing images while preserving 
edges were found to yield performance comparable to other 
established techniques. There were also thoughts given 
towards implementing HVS models in hardware [9] [10].  
These models, which assumed only achromatic information 
and utilized the Gaussian-based filters as representing some 
of the lower level operations conducted in early vision, were 
able to simulate some of the known behaviors on the HVS. 
HVS-based models have also been used in image processing 
(e.g. texture segmentation [11] and automating analysis of 
large image sets from planetary exploration [12]. More 
recently, Daley [2] proposed an approach for developing 
MV algorithms through the use of HVS models. 

While our proposed solution has been motivated by 
HVS, we also recognize that HVS does not exhibit perfect 
color constancy [13] [14] and also performs poorly in 
lighting with abnormal spectral content (e.g. sodium arc) 
particularly when colors are very similar. Thus, we develop 
here a robust method combining the quantitative ability of a 
CMV to discriminate very small color difference between 
similar features, and the qualitative ability of a HVS to 
create ACC for subsequent color classification. Unlike 
research on color constancy that refers to the lack of change 
in the perceived color of a colored patch as the global 
illumination changes, we focus on contrast due to the change 
in perceived color of a colored patch as its local surround is 
changed given the illumination. 

The remainder of this paper offers the following: 
1) We highlight the elements in the HVS that influences 

color contrast pre-processing algorithms for MV-based 
color classification. 

2) We provide a general formulation that uses the difference-
of-Gaussians (DoG) for creating contrast between features 
in color space so that unrelated features (appearing as 
noise in color classification) can be more easily removed. 

3) We examine the effects of ACC on color classification in 
the context of food processing and natural object handling 
automation applications, where variability in natural 
objects is usually several orders-of-magnitude higher than 
that for man made objects.  

II. HINTS FROM HVS MODELS ON COLOR CONTRAST

In the typical HVS (Fig. 3), the cornea and lens together 
focus images on the retina that is part of the central nervous 
system. There are five types of neurons in a HVS; 
photoreceptors, and bipolar, ganglion, horizontal and 
amacrine cells. The photoreceptors (rods and cones) respond 
to light and transform this radiant energy into electrical 
activity, which is transmitted to retinal bipolar cells and then 
retinal ganglion cells (RGC) that output a spike train.  Two 
other neurons, the horizontal and amacrine cells, intervene 
laterally in this pathway and modulate the light input. Visual 
processing stream flows from the eyes through the lateral 
geniculate nucleus, and up to the cortex where visual 
information is disseminated to both exclusively visual 
centers and other areas where it is integrated with memory 
and other senses. Although the visual cortex processes much 
information (such as form, contrast, location, movement and 
color of the objects being perceived), we are particularly 
interested in biologically inspired contrast and color since 
MV generally outperforms human in gauging quantitative 
information such as location and movement. 

Fig. 3 Retinal neurons: photoreceptors, bipolar and ganglion cells (RGC) 

A. RGC’s Responds to an Edge Stimulus  
Ganglion receptive fields in the eye respond to contrast. 

Attempts to model the contrast of a HVS led several 
scientists to record the firing rate of RGC that provide the 
sole connecting link between the receptive mechanisms of 
the retina and the more central analyzing mechanism of the 
visual system. In early 1953 Kuffler [15] combined the use 
of microelectrodes for recording directly from RGC bodies 
in the intact eye of the cat with the simulation of the retinal 
with localized spots of light. Among Kuffler’s important 
findings, he found two kinds of ganglion cells, which he 
called ON-center and OFF-center cells for those excited and 
inhibited by light in the center of their receptive fields 
respectively. Studies for dogs’ RGC have been confirmed in 
the cat, and it is now believed that many of the basic 
anatomical and physiological principles evident in the cat 
retina also hold for the primate retina [16].  

In an attempt to provide a better understanding of the 
role of the retina in spatial vision, Enroth-Cugell and Rodson 
[17] built upon Kuffler’s method and quantitatively recorded 
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the activities of an individual cell with a micro-electrode 
either directly on the soma of the cell or from the axon of the 
cell as it runs in the optic tract towards its central 
destination. In addition, they used sinusoidal gratings 
generated on a CRT screen as visual stimuli to develop a 
quantitative description of RGC behaviors using frequency 
response techniques. Three of Enroth-Cugell and Rodson’s 
important findings of interest here were the following: 
1. Equal and opposite effects on a RGC’s firing rate can be 

reproduced by independent stimulation of the center and 
surround of its receptive field.  

2. If the illumination over the entire center and surround are 
changed simultaneously, there is only a small transient 
effect on the cell’s firing rate. Ganglion cells respond best 
to spatial patterns that cause the receptive center to be 
illuminated at a different level from the surround.  

3. Their measurements of the RGC’s firing rate as an edge 
was passed through the field of view of a cat are 
reproduced in Fig. 4(b). They modeled the RGC spatial-
frequency responsibility function and receptive field 
weighting function as the difference of two Gaussian 
(DoG) functions.  In Fig. 4(b), the smooth curve (solid 
line) is the fitting DoG on measurements (in dots) and the 
little pictures at the top attempt to show the spatial 
relationship of the stimulus pattern to the RGC’s receptive 
field for several different spatial position. 

The response (Fig. 4) shows that the striking ability of a 
HVS to emphasize the edge while simultaneously smooth its 
surround and maintain the level of contrast.   

(a) ON-/OFF-center (b) Cat’s RGC response to an edge stimulus [17]  
Fig. 4 Receptive field and ganglion Cell 

B. Modern Models of Color Vision 
There are two types of photoreceptors, rods and cones. 

Rods have very low spatial resolution, but extremely 
sensitive to light allowing us to see at night in starlight 
conditions. Cones, on the other hand, are relatively 
insensitive to light but responsible for our color vision and 
have high spatial resolution. The trichromacy theory tells us 
that our color vision comes from three types of cone cells 
corresponding to red-green-blue (RGB) or Long-Medium-
Short (LMS) wavelengths. It, however, does not address the 
manner in which this information is handled beyond the 
photoreceptors. The opponent-colors theory of color vision, 
proposed by Hering [18], advanced to explain various 
phenomena that could not be adequately accounted for by 
trichromacy. Examples of such phenomena are the after-

image effect (if the eye is adapted to a yellow stimulus the 
removal of the stimulus leaves a blue sensation or after-
effect) and the non-intuitive fact that an additive mixture of 
red and green light gives yellow and not a reddish-green. 
These and similar observations led Hering to propose the 
opponent color vision theory that color is processed by 
bipolar hue channels referred to as the red-green and blue-
yellow channels.  By bipolar we mean that, at any instant, 
each channel can signal only one of the two attributes it is 
capable of coping as illustrated in Fig. 5. Hering proposed 
that yellow-blue and red-green represent opponent signals; 
this also explain why there were four psychophysical color 
primaries red, green, yellow, and blue and not just three. 
Hering also proposed a white-black opponency but this third 
opponent channel has been abandoned in most modern 
versions of the theory. It is now accepted that the physiology 
of color vision to date established two facts:  
1) Color vision is normally trichromatic. 
2) Opponent processing plays a central role in coding color 

information. 
Both the trichromatic and  opponent-color theories describe 
essential features of our color vision with the latter theory 
describing the perceptual qualities of color vision that derive 
from the neural processing of the receptor signals in two 
opponent channels and a single achromatic channel. 

Fig. 5 Hering’s theory of opponent color 

III. MODEL FOR ARTIFICIAL COLOR CONTRAST

Consider a two-dimensional (2D) symmetric (zero-
mean uncorrelated) Gaussian kernel: 

2 2

22

1( , ) exp
22

x y
G x yσ σπσ

+= − (1)

to get ( , ) ( , )g x y G f x yσ= ∗ (2)
where for simplicity Gσ denotes ( , )G x yσ . Similar to Laplace 
of a Gaussian, the image is first smoothed with the Gaussian 
kernel of widthσ. The difference of two Gaussian-smoothed 
images can be written as 

( , ) ( , ) ( , )i c i s jh x y G f x y G f x yσ σ= ∗ − ∗ (3)

A. DoG as an Edge-finder of a Single Grayscale Image 
The difference of two Gaussians is commonly used in 

MV to detect edges in a grayscale image, for which 
( , ) ( , ) ( , )i jf x y f x y f x y= = .  Thus,  

( , ) ( ) ( , ) ( , )c sh x y G G f x y DoG f x yσ σ= − ∗ = ∗ (4)
where the subscripts “c” and “s” denote center and surround 
of the excitatory and inhibitory receptive fields (Fig. 6) 
respectively; c sσ σ< ; and the DoG as an operator or 
convolution kernel is defined as 
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Fig. 6 DoG model of receptive field 

B. Artificial Color Contrast for Feature Discrimination 
To facilitate the following discussion, we broadly divide 

the surrounds into two types: 
Type I:  ( , ) ( , )i ih x y DoG f x y= ∗ (6a)
Type II: ( , ) ( , ) * ( , )j c i s jh x y G f x y G f x yσ σ= ∗ − (6b)
Type I is essentially an edge detection filter applied on a 
color component. Type II allows for ( , ) ( , )i jf x y f x y≠ .  In 
both Types I and II, ( , )if x y with (i=1, 2, 3) corresponds to 
RGB component images respectively; and ( , )jf x y with (j=4, 

5, 6) are some linear combinations of RGB component 
images to be designed.  The ACC method is to find 

3

1
( , ) ( , )j i i

i

f x y f x yα
=

= (7)

where αi are weighting factors such that contrast between 
different features with similar color can be amplified 
artificially while retaining their edge information. We mimic 
the HVS by denoting the component ( , )if x y as center and 
the linear combination as a surround. In the subsequent 
discussion, we denote (for simplicity) the component images 

R=R(x,y), G=G(x,y) and B=B(x,y).
One possible set of surrounds (inspired by the Herring’s 
opponent color theory, Fig. 5) is the R-G and Y-B channels: 

( ) ( )( , )R Gf x y R G± − = ± − (8a)

( ) ( )( , )Y Bf x y R G B± − = ± + − (8b)
Their effect on colors can be seen by applying (8a) and (8b) 
on a color calibration pattern in Fig. 7. Much like Hering’s 
opponent cells, ( , )R Gf x y− excites red and inhibits green. 
Similarly, ( , )Y Bf x y− excites yellow and inhibits blue.   

(a) Color checker (b) R-G of (a) (b) R+G-B of (a) 
Fig. 7 Effect of R-G and Y-B channels on monitor color test patterns 

Substituting (8a) into Type II,  

( ) ( , ) *
c sR R G sh x y DoG R G Gσ− = ∗ + (9a)

[ ]( ) ( , ) * 2
c sG R G sh x y DoG G G G Rσ− = ∗ + − (9b)

[ ]( ) ( , ) * ( )
c sB R G sh x y DoG B G B R Gσ− = ∗ + − − (9c)

and similarly (8b) into Type 2,   
[ ]( ) ( , ) *

c sR Y B sh x y DoG R G B Gσ− = ∗ + − (10a)

[ ]( ) ( , ) *
c sG Y B sh x y DoG G G B Rσ− = ∗ + − (10b)

[ ]( ) ( , ) * 2 ( )
c sB Y B sh x y DoG B G B R Gσ− = ∗ + − + (10c)

In (9) and (10), each transformed component consists of two 
parts: the 1st part corresponds to Type I which essentially 
applies the DoG filter on each of the RGB component 
images and thus allows the detection of edges in the image. 
The 2nd part emphasizes or reduces the influences of certain 
color components (relative to the target color) in order to 
create the needed artificial contrast. The ACC method is best 
illustrated with examples.  Due to page limitations and 
without loss of generality, we consider here primarily food-
processing applications, where red is often a dominant 
feature color to be identified. Thus, we choose (8a) as the 
surrounds for the red and green component images and (8b) 
as the surround for the blue component image; the intent is 
to highlight red features in the background of yellow. The 
widths,  σc=1 and σs=10 pixels, are used in the remainder of 
this paper.  The transformed ACC space is given by (11):  

4 ( )( , ) ( , ) *
c sR R G jh x y h x y DoG R G Gσ−= = ∗ + (11a) 

[ ]5 ( )( , ) ( , ) * 2
c sG R G sh x y h x y DoG G G G Rσ−= = ∗ + − (11b) 

[ ]6 ( )( , ) ( , ) * 2 ( )
c sB Y B sh x y h x y DoG B G B R Gσ−= = ∗ + − + (11c) 

Example 1: ACC’s Effect on Contrast and Edge 
Consider the test image as shown in Fig. 8(a), which 

made up of two similar red features with their RGB values 
are given in the square brackets. Figure 8(b) shows the 
transformed ACC image, where an offset of 100 is added to 
the transformed image to allow for visual illustration. 
Figures 8(c) and 8(d) plot the 1st and 2nd terms of (11) across 
the edge of the transformed image shown in 8(b).  Two 
observations are worthy of mentioning: 
1) The ACC method has a significant effect on enhancing 

contrast (denoted by the ratio ∆I/I where ∆I is the 
Euclidean distance between the two feature colors), 
which increases from 0.15 to 0.57.   

2) Type II response, as given by the component sum in 8(a) 
and 8(b), resembles the cat’s RGC response to an edge 
stimulus shown in Fig. 4 [17]. 

[170,110,108] [169,90,8] [110,50,-39] [90,11,-93] 
(a) Original RGB image (b) Transformed ACC image 
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Fig. 8 Example illustrating the basic concept of ACC 

Example 2: Effect of ACC to Color Classification 
Figure 9(a) shows an image of a white-feathered broiler 

(meat chicken) on a moving conveyor, where the red comb 
is to be identified and the featherless spot with shadow is a 
potential noise. Figure 9(b) shows a representative set of 
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training data for classification, where two clusters (denoted 
by red and blue) are color pixels of the target and noise in 
RGB color space. These clusters (both dominant in red) are 
very close to each other in the color space; it makes color-
based identification a difficult task. Thus, we apply the ACC 
method to artificially increase the separation between the 
two clusters. Figure 9(c) shows the transformed ACC image 
computed using (11a), (11b) and (11c). 
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(a) Original image (b) Color pixels in RGB space 
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(c) Transformed ACC image (d) Color in transformed space  
Figure 9 Comparison showing ACC’s effect on features in color space 

Table 1 Comparison between features in RGB and ACC transformed space 
Original: [target]/[noise] Transformed: [target]/[noise]

Mean [152, 58, 45]/[135,  85, 39] [61, -34, -123]/[81, 29, -143] 
SD [3.9, 7.2,  22.2]/[1.1, 4.3, 10] [3.5 , 4.2  12.8]/[0.5, 1.9,  7.5] 
Distance 36 69 

The effect of the ACC on color representation can be 
illustrated by comparing the pixel clusters of the original 
RGB image and those of the transformed ACC image in 
Figs. 9(b) and 9(d) respectively along with their means, 
standard deviation (SD), and distance in Table 1, where the 
SD is calculated along the principal axes.  The distance 
between the clusters in ACC space is twice that in the RGB 
space. In addition, the application of the Gaussian smoothing 
filters results in more closely packed clusters.  Both these 
effects will ease the design of the classifier. 

IV. ILLUSTRATIVE APPLICATIONS IN FOOD PROCESSING

In this example, we illustrate the applicability of the 
ACC method with some real world industrial problems: 

Example 1: Fanbone detection
We examine the ACC robustness to sensor resolution 

with a bone detection application; detection of bones in de-
boned product is great importance to many producers 
because of food safety concerns. Figures 10(a) and 11(a) 
show two images of a poultry (breast-butterfly) meat taken 
using two different color cameras: 
1)  High-resolution 3-CCD camera (Sony DXC900). 
2).  Low-cost single-chip camera (Point Grey Firefly). 
In Figs. 10(a) and 11(a), a “fan-bone” to be identified can be 
seen at the lower right corner on the surface. In addition, 
there are blood stains near the fan-bone and on the opposite 
side of the breast-butterfly.  These blood stains, which are 
acceptable from a safety viewpoint, could trigger false 

detection. The potential problems presented by noisy blood 
stains can be seen in the color patterns in the RGB space gin 
Figs. 10(b) and 11(b); particularly in the image captured by 
the single-chip camera. Figures 10(c) and (d) show that ACC 
can effectively reduce the pixel distribution of the fanbone 
and blood stains in color space.  It also increases the 
separation between the two color clusters. It is worth noting 
that the pre-processed image of the single-chip camera with 
ACC outperforms the 3-CCD image without ACC, implying 
that ACC could present a potentially low-cost solution to 
color classification problems. 

10(a) Fanbone (3-CCD) 11(a) Fanbone (single-CCD) 
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10(b) Color in RGB space (3-CCD) 
Mean=[150, 92  108] /[138, 62,   67] 
SD=[4.1, 6.6  11.9] /[5.3, 8.0, 14.0] 

Distance= 52

11(b) Color in RGB space (1-CCD) 
Mean=[67, 39, 44]/[93, 45, 45] 

SD=[1.2, 2.3, 9.2]/[5.6, 9.9, 31.2] 
Distance= 27

10(c) ACC image (3-CCD) 11(c) ACC image(single-CCD)
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10(d) Color in ACC space (3-CCD) 
Mean=[88, 30,  -24]/ [70, -5  -77] 

SD=[1.9, 4.1, 10.9]/ [4.4    7.1   11.9] 
Distance= 67

11(d) Color in ACC space (1-CCD) 
Mean=[36, 9,  -24]/[50, 7, 57] 

SD=[0.6, 2.0, 5.9]/[5.1, 7.8,   18.4] 
Distance= 36

Fig. 10 Image with 3-CCD camera 
SONY DXC900, 10bit, 768(H)x494(V)  

Fig. 11. Single-CCD color image 
Point Grey Firefly, 8-bit 640(H)x480(V) 

Example 2: Live-bird Handling Application
We evaluate the effect of the ACC in the context of an 

automaton problem, where the bird’s orientation (facing 
forward or backward) must be determined in real time.  
Specifically, we use two color classification algorithmsto 
find the red comb of the bird as shown in Fig. 12; the RCE 
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neural network classifier (RCE-NNC) [19] [20] uses hyper-
spheres while the support vector machine SVM [21] uses 
hyper-planes. These algorithms for the orientation detection 
problems are given in [3]. In both algorithms, morphological 
operation based on the rule of majority (10 pixels out of a 
8×8 mask) is used as a post-processor to remove isolated 
pixels. The results of the color classification (with 81 
640×480 color images of birds) with/without pre-processed 
using the ACC method are summarized in Table 2. Resulting 
features detected by RCE network were found to contain 
considerable amount of noise while the SVM tends to 
exclude pixels belonging to the target. Both these methods, 
when they are applied using the original RGB images, result 
in many false detection particularly in finding backward 
birds, for which the detection algorithm must find no feature 
color in the image. The ACC significantly improves the 
success rate of detecting the backward facing birds by 
increasing the distance between different features in color 
space.  

(a) Forward without/with ACC (b) Backward without/with ACC
Fig. 12 Sample images of forward and backward facing birds 

Table 2 Classification results 
RGB images ACC Transformed Algorithms Forward backward Forward backward 

RCE-NNC 51/51 0/30 51/51 18/30 
SVM 30/51 21/30 30/51 30/30 

V. CONCLUSION

A pre-processing method to enhance contrast between 
features in color space has been introduced.  This method, 
inspired by the ability of human to perceive fine gradation of 
color, emulates the lower-level biological operation of a 
HVS to artificially create contrast between features while 
suppress noise. The effect of the ACC on color classification 
is essentially to increase the separation between clusters of 
feature pixels in color space, thereby minimizing the 
appearance of unrelated features as noise.  

The ACC method has been evaluated in the context of 
MV-based food processing applications. Two commonly 
used color classification algorithms have been employed in 
the color detection for an automated live-object handling 
problem. When the color classification is applied on the 
original RGB images, both these methods result in much 
false detection. We demonstrate that the ACC method can 
significantly improve the success rate of the detection by (1) 
reducing the standard deviation of both the target and noise 
pixels, and (2) enlarging the separation between feature 
clusters in color space.
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